Supplementary Material for GAPartNet: Cross-Category Domain-Generalizable
Object Perception and Manipulation via Generalizable and Actionable Parts

https://pku-epic.github.io/GAPartNet

1. Dataset and Data Annotation
1.1. Data Annotation

To construct a large-scale part-centric interactive dataset,
great effort is needed to clean up and annotate existing ob-
ject shapes. We first identify the issues with the existing
database, and then we develop a systemic pipeline for an-
notating the large-scale dataset.

Data sources. GAPartNet dataset is constructed based
on two existing datasets, PartNet-Mobility [1 1] and AKB-
48 [4]. Focusing on the GAParts we define, we select 23
object categories from PartNet-Mobility and 4 object cat-
egories from AKB-48. Most of the 3D object shapes in
GAPartNet are from PartNet-Mobility. Since the texture of
shapes in PartNet-Mobility is all synthetic, to mitigate the
sim-to-real gap, we further leverage the shapes from AKB-
48 whose texture is scanned from the real world.

Note that both PartNet-Mobility and AKB-48 have the
object categories Box, Bucket, TrashCan. Although they use
the same category names, their shapes can be very different.
A TrashCan from PartNet-Mobility and one from AKB-48
can have significant differences in geometry, the same as
Box and Bucket. So we do not merge them together into
one object category but keep their original categories.

Issues with Existing Database. The original PartNet-
Mobility [1 1] and AKB-48 [4] lack of directly usable infor-
mation we need for our new annotations. First, they do not
provide directly usable consistent semantic annotations to
similar parts across object categories. For example, some
handles on Door are labeled as door, while some doors on
StorageFurniture are labeled as frame. Secondly, their orig-
inal annotations are not as fine-grained as we need. Specif-
ically, fixed handles, i.e. line fixed handles and round fixed
handles, are not annotated as individual parts, since they are
attached to either base bodies or other movable parts. Their
meshes are merged with others which leaves rare semantic
cues to re-separate them. Finally, there are a lot of meshes
of parts that we care about are imperfect, which seriously
limits either the quality of our pose annotations or the qual-
ity of rendered images.

Data Annotation Effort. To address these issues, we
first manually go over all objects to re-separate the meshes

of fixed handles from the original 3D object shapes. We
also modify the kinematic chains to re-merge these meshes
into new links and add corresponding fixed joints, which
provides more consistent annotations and is beneficial for
following robotic tasks. In this step, more than 1,000 fixed
handles are re-separated and re-merged. Secondly, we go
over all 1,166 objects in GAPartNet and clean all original
semantic annotations to align with our GAPart class defini-
tion. Thirdly, we manually use MeshLab and some heuris-
tics to modify imperfect meshes, not only cutting the re-
dundant meshes off but also fixing the one-sided meshes to
facilitate the annotating and rendering. In this step, more
than 100 object instances are modified.

Finally, with the 1,166 3D object shapes with new se-
mantic annotations and modified meshes, we use a lot of
heuristics to fit the oriented tight bounding boxes of all
8,489 GAParts, corresponding to their canonical orienta-
tions, and add our pose annotations. With our effort,
GAPartNet is capable of detection, segmentation, pose es-
timation, and manipulation on cross-category generalizable
and actionable parts.

1.2. Dataset Rendering

We use the SAPIEN 2.0 environment [11] to render a
large-scale dataset from our GAPartNet objects, consisting
of partial point clouds, part semantic segmentation masks,
part instance segmentation masks, NPCS maps, and part
pose annotations, which covers all the data needed for the
proposed part segmentation, part pose estimation and part-
based object manipulation tasks.

Environment Settings. We turn on the ray-tracing mode
of SAPIEN to get more sense of reality. During rendering,
we randomize the joints’ poses of the articulated objects and
randomly pick a camera position within a reasonable per-
spective. Specifically, we manually set the range of camera
position for each object category to get desirable views of
each object, making sure we do not look at the back of a
StorageFurniture, or from beneath an Oven, neither from
too far nor too close. In the meantime, we randomly dim
the ambient light within [10%, 90%] and randomly rotate
the camera within £5°.

The output image resolution is set to 800 x 800. For each

https://pku-epic.github.io/GAPartNet

object, we render 32 RGB images. Along with each RGB
image, we also obtain the segmentation masks and the depth
image using built-in features of the SAPIEN environment.
Additionally, we compute NPCS maps and oriented tight
bounding boxes as part pose annotations for all GAParts.

Point Cloud Sampling. Using camera intrinsics, 2D
RGB images, and depth images, we do back-projection to
obtain dense, partial point clouds. We sample 20,000 points
for each dense point cloud using Farthest-Point-Sampling
(FPS). While sampling the point clouds, we also generate
corresponding ground truth of semantic segmentation, in-
stance segmentation, and NPCS maps. These 20,000-point
point clouds and their annotations are computed offline for
speeding up the following 3D tasks.

2. More Details on Part Segmentation and Part
Pose Estimation

2.1. Details on Network Architecture

Architecture. The vision network has a similar archi-
tecture as PointGroup [3]. Please refer to the original Point-
Group paper for details. In our work, we set the clus-
ter radius to 0.03 and the cluster point number threshold
to 5 to get good segmentation results in the GAPartNet
dataset. The input point cloud P is first voxelized into a
100 x 100 x 100 voxel grid. The backbone UNet con-
sists of an encoder and a decoder, both with a depth of 7
(with channels of [16, 32, 48, 64, 80, 96, 112]), and outputs
a point-wise feature F' with K channels, where K = 16.
After grouping, each mask proposal C/ is normalized and
voxelized again into a 50 x 50 x 50 voxel grid and passed
through the Scoring module, which consists of a 2-depth
UNet (with channels of [16, 32]) for point-wise feature ex-
traction, an ROI Pooling layer for foreground feature merg-
ing, and a linear layer for confidence score S; prediction.
During inference, points with binary classification scores
below 0.4 are filtered out as background, and proposals with
fewer than 5 points or a score lower than 0.09 are discarded.
Finally, Non-Maximum Suppression (NMS) with an IoU
(Intersection over Union) threshold of 0.3 is applied to get
the final segmentation masks C.

For domain adversarial learning, we introduce a Gradi-
ent Reverse Layer (GRL) with a = 0.3 for the negative
gradients and three domain discriminators with similar ar-
chitectures as the Scoring module mentioned above for do-
main classification. We place the three discriminators at the
2-nd, 4-th, and 6-th decoder layers of the backbone UNet,
so the three discriminators can take different features from
the three layers of the backbone for domain classification.
Each discriminator takes the queried points and the corre-
sponding features as input and predicts the domain labels.
The domain discriminators are only used during the training
procedure, and the proportion of classification is set to 0.05

in our implementation.

For each segmentation mask C}, the point-wise feature
F¢, queried from F is passed through the NPCS-Net,
consisting of a 2-depth UNet (with channels of [16, 32]) and
three Multilayer Perceptrons (3-MLP) for poise-wise NPCS
prediction. Note that in practice, we use 9 different groups
of 3-MLP to predict NPCS coordinates in 9 channels, and
we only supervise the channel corresponding to the ground
truth semantic label.

2.2. Details on Supervision

Symmetry-aware Part Pose Estimation. Since each
part class in GAPart has different symmetry patterns, they
should be handled case by case. We design the symmetry-
aware NPCS loss as follows:

Type 1 (i.e., line fixed handle, hinge handle): we tolerate
the 180° symmetry along the z axis for this symmetry type.

Type 2 (i.e., hinge door, hinge lid): we tolerate the 180°
symmetry along the y axis for this symmetry type.

Type 3 (i.e., slider button, slider lid, round fixed handle):
we tolerate the rotation along the z axis and flipping along
the x-y plane for this symmetry type. In our implementa-
tion, we split the continuous rotation angles into 12 discrete
angles for supervision.

Type 4 (i.e., hinge knob): we tolerate the rotation along
the z axis for this symmetry type. In our implementation,
we split the continuous rotation angles into 12 discrete an-
gles for supervision.

Type 5 (No symmetry, i.e., slider drawer) : we do not
tolerate any symmetry for this symmetry type.

The design of NPCS loss Lnpcs is similar to [10]. We
use soft-L1 loss and for each tolerated symmetry pattern,
we supervise the minimal loss in the set. For more imple-
mentation details, please refer to [10].

Loss Function. The whole training procedure of the net-
work can be divided into four stages.

For the first stage (0-5 epochs), we only supervise the
semantic prediction and the offset prediction branches with
the same loss functions Ly, and Ly as PointGroup [3].
Please refer to [3] for more details.

For the second stage (5-10 epochs), we add the score loss
Lo for the proposals’ IoU prediction, following the design
of [3].

For the third stage (10-15 epochs), we add the symmetry-
aware NPCS loss Lnpcs for the NPCS prediction, as intro-
duced above.

For the fourth stage (after 15 epochs), we introduce our
domain adversarial learning strategy after the part segmen-
tation network can output good proposals and correspond-
ing proposal scores, similar to [2]. The total loss in this
stage can be formulated as

L = LQrB-adv + Lsem + Lot + Lsco + Lnpcs,

where Lgrp-agv denotes the domain adversarial loss.

2.3. Details on Pose Fitting and Joint Prediction

Pose Fitting. Given a predicted 3D part mask with its
NPCS map, we use RANSAC [1] for outlier removal and
Umeyama algorithm [8] to estimate the 7-dimensional rigid
transformation.

Joint Parameter Prediction. We simplify the joint pa-
rameter prediction process thanks to the unified definition
of our GAParts. After estimating the bounding box for each
part, we can leverage the definition of the GAPart to di-
rectly calculate the joint parameters. For example, given
the bounding box of a slider button, we can directly query
its prismatic joint parameter, which is along the z axis in the
part canonical space.

2.4. Training Procedure

Our model is trained in an end-to-end manner with max-
imum training epochs of 200. We use the Adam optimizer
with a batch size of 32 and a learning rate of 0.001. The
whole training procedure takes around 1.5 days on a single
NVIDIA GeForce RTX 2080 Ti GPU. Note that the domain
adversarial training is very unstable, we thus use five seeds
to train it and select the best one. What’s more, to boost per-
formance, we progressively use the multi-resolution train-
ing strategy, which improves the performance.

2.5. Seen/Unseen Object Categories Splitting

17 Seen Categories. Box, Bucket, Camera, CoffeeMa-
chine, Dishwasher, Keyboard, Microwave, Printer, Remote,
StorageFurniture, Toaster, Toilet, WashingMachine, Bucket
(AKB-48), Box (AKB-48), Drawer (AKB-48), Trashcan
(AKB-48).

10 Unseen Categories. Door, KitchenPot, Laptop,
Oven, Phone, Refrigerator, Safe, Suitcase, Table, TrashCan.

2.6. Baseline Experiments

PointGroup [3]. The PointGroup baseline is modi-
fied from [3]. We add our NPCS prediction branch to the
vanilla PointGroup. The final loss can be formulated as
CPointGroup = Eseg + Lnpcs, Where Lnpes is the same as
our method.

AutoGPart [5]. Following AutoGPart [5], we introduce
a similar intermediate supervision for generalizable part
segmentation. We build a parametric supervision model
M(-|0) to find a proper intermediate part segmentation su-
pervision, which can be learned through a “propose, eval-
uate, update” strategy. We use each object category as
each “sub-domain” in AutoGPart and use the same hyper-
parameters for the intermediate auxiliary loss. We still add
our NPCS prediction branch to the network for part pose
estimation. The final loss can be formulated as Lagp =

Lseg + Lintermediate + Lnpcs. For more details about the inter-
mediate auxiliary loss and the training strategy, please refer
to [5].

3. More Details on Part-based Object Manipu-
lation

3.1. Interaction Policy

(1) Round Fixed Handle: For a round fixed handle, we
use the gripper to approach the handle from the positive di-
rection of the z axis, open the gripper to a width that ex-
ceeds the side length of the bounding box, and then close
the gripper to complete the grasping.

(2) Line Fixed Handle: The interaction policy for a line
fixed handle is similar to a round fixed handle. Note that we
want the opening direction of our gripper and the line fixed
handle to be perpendicular, so we turn the opening direction
parallel to the y axis of the predicted bounding box.

(3) Hinge Handle: The interaction policy for a hinge han-
dle is similar to a line fixed handle. After approaching and
grasping the hinge handle, we can rotate it along the pre-
dicted axis of the revolute joint.

(4) Slider Button: For a slider button, we close the grip-
per, approach the button from the positive direction of the z
axis, and then press the button.

(5) Hinge Knob: For a hinge knob, we clamp the knob
like a round fixed handle and rotate the end-effector to com-
plete the manipulation.

(6) Slider Drawer: A gripper approaches an open drawer
along the z axis to fetch something in the drawer, and ap-
proaches a drawer against the x axis to open it. More often
than not, we expect to grab a handle hopefully located on
the front face of a drawer.

(7) Hinge Door: For a hinge door with a handle on the
front face, we try to grab the handle to open the door. Af-
ter grabbing the handle, the gripper rotates around the pre-
dicted shaft of the door to complete the opening or closing.
For a door without any handles, if the door is not closed, we
use the gripper to clamp the outer edge along the y axis of
the bounding box to open the door.

(8) Hinge Lid: for a hinge lid, we use an interaction pol-
icy similar to a hinge door.

(9) Slider Lid: for a slider lid with a handle, we grab the
handle to open the lid. Otherwise, we use the gripper to
clamp the edge of the lid along the z-y plane of the bound-
ing box, and then move up and down along the z axis to
open and close the lid.

3.2. Simulation Experiments

Benchmark Settings. We set up our interaction envi-
ronment using the SAPIEN [1] simulator, modified from
the ManiSkill challenge [7]. We benchmark our method
on 4 tasks, i.e., using a single Franka gripper to open a

drawer, open a door, manipulate a handle, and press a but-
ton. These tasks exemplify robot manipulation under the
motion constraint of a prismatic or a revolute joint. For eval-
uation, we randomly pick unseen objects that contain doors,
drawers, handles, and buttons from seen object categories.
Considering the limitation of the single gripper, we select
such objects that, given the ground truth of their segmenta-
tion and pose, can be opened successfully using the heuris-
tics under our benchmark setting. Furthermore, to evaluate
the cross-category generalizability of our method, we also
randomly pick unseen objects from previously unseen ob-
ject categories. Compared to the ManiSkill Challenge [7],
we limit our observation to a first-frame-only partial point
cloud of the object, with only one point around the part cen-
ter indicating which part to interact with. Given the initial
state of the robot, it performs the whole manipulation only
based on the observation at the first time step. The action
space of the robot is the motor command of the 6 joints
of the robot to determine the pose of the gripper, and we
use position control to open or close grippers. A success in
opening the drawer, opening the door, using the handle, and
pressing the button is defined as manipulating the part for
90% of the motion range within 1,000 steps with a stable
stop at the end. For each task, we use 20 objects from seen
categories and 20 from unseen categories to construct our
benchmarks, respectively. Overall, we conduct 4 manipu-
lation tasks in the simulator with 160 objects from 6 seen
object categories and 6 unseen object categories.

Part-pose-based Manipulation Heuristics. We use
the interaction policy based on the heuristics introduced in
Sec. 3.1 to open drawers, open doors, manipulate handles,
and press buttons. Specifically, when we get the part pose,
we can immediately get the grasping pose with our policy.
Then we use a motion planning library (i.e., mplib, provided
by SAPIEN [1]), to move our gripper to the grasping pose.
Then, with our interaction policy and axis predicted from
our method, we design the end-effector trajectory just along
the trajectory of the part moving and interpolate the trajec-
tory with a time step of ﬁ. With the IK (Inverse Kinemat-
ics) algorithm and a PID controller, we solve the poses of
joints and move the end-effector along the trajectory. All of
our implementations are decoupled from ROS and can be
easily implemented in other simulators.

Baselines for Object Manipulation. (1) Where2act [6]
(Oracle input for the first two tasks). We modified the
Where2act interaction pipeline to finish our tasks. We use
a similar pulling motion for the first three tasks and a push-
ing motion for the fourth task. Giving only a point to indi-
cate the part to be interacted with makes it challenging for
Where2act to perform proper actions, especially for open-
ing drawers and doors. We thus provide additional infor-
mation (i.e., the handle center of the target door or drawer
as a special indicator), and we directly select this point as

Figure 1. More Qualitative Results for Part-based Object Ma-
nipulation in the Real-world.

the point to be interacted with. Then, after motion direction
selection, the action is performed to finish the task. We con-
strain Ny, = 10 action steps to finish these tasks. (2)Man-
iSkill [7] (Oracle baseline). ManiSkill provides a method
for similar vision-based tasks in a reinforcement learning
setting. To satisfy the settings in this baseline, we further
provide oracle inputs (i.e., per-frame point cloud observa-
tions and ground truth part masks). We also design similar
dense rewards for each task and train the policy with the
same hyper-parameters as ManiSkill. Please refer to [7] for
more details.

3.3. Real-world Experiments

Implementation Details. To evaluate the robustness and
generalizability of our method, we use two robot arms (i.e.,
KINOVA and FRANKA) to manipulate previously unseen
objects with only partial point cloud observations in the real
world. We use similar motion planning and a similar end-
effector trajectory as what we do in the simulator. A partial
point cloud of the target object is acquired from the RGB-D
camera (Okulo P1 ToF sensor in our experiments). To set
up the interaction environment, we place the object and the
robot arm in a proper position for interaction and use ArUco
markers to calibrate the camera sensor. We also provide a
point indicating the part to interact with, just like in the sim-
ulator. During manipulation, we first estimate the bounding
box of the target part and calculate the trajectory using the
heuristics, then use the control API provided by the robot
arm to follow the trajectory and finish the task. Overall, we
conduct 4 manipulation tasks, i.e., opening doors, opening
drawers, lifting lids, and pressing buttons, in the real world
with 11 objects from 2 seen object categories and 3 unseen
categories.

4. Visualization of GAPartNet Dataset

Exemplar objects of each GAPart class from seen cate-
gories and unseen categories in the GAPartNet dataset are
shown in Fig. 2.

5. More Results of Part Segmentation and Part
Pose Estimation

We visualize more results of part segmentation and part
pose estimation in Figs. 3 to 5.

Success Rate(%) Drawer Door Handle Button
Seen Unseen | Seen Unseen | Seen Unseen | Seen Unseen
Where2act [6] 69.9 54.5 44 4 18.2 78.7 49.2 82.2 80.9
ManiSkill [7] 329 26.6 27.8 28.3 53.9 42.1 65.5 54.5
Ours 95.0 90.0 70.0 55.0 90.0 85.0 100.0 95.0

Table 1. Results for Cross-category Object Manipulation in SAPIEN Simulator [11].

Train Test Set
Set S.C. U.C.
Opening | w/o Pose | 26.1+4.9 22.0+2.3 18.1£2.8
Door w/ Pose | 58.3+£3.9 37.9+2.5 18.3+2.9
Opening | w/o Pose | 59.8+4.2 40.9+4.5 18.4+3.3
Drawer | w/Pose | 91.2+5.2 87.1+6.7 35.6+3.8

Table 2. Part poses improve RL success rate. S.C.=Unseen
objects in seen categories. U.C.=Unseen objects in unseen cate-
gories. A larger benchmark for RL with # instances: 258/63/77
for doors, 138/57/96 for drawers.

6. More Results of Part-based Object Manipu-
lation

For the simulation experiments, the quantitative results
are shown in Tab. 1. Our method significantly outperforms
the baselines on all 4 tasks, showing good generalizability
and proving the effectiveness of our part-pose-based manip-
ulation policy. More qualitative results are provided in the
supplementary video 04:30-04:46.

For the real-world experiments, more qualitative results
are provided in Fig. | and the supplementary video 04:47-
05:12.

7. More Discussions
7.1. Real Depth Signal and Sim-to-Real Gap

In our experiments, we find that depth quality is crucial
to our perception and downstream manipulation. Actually,
for our real-world experiments, we have to spray the con-
trast aid paint onto the transparent lid and use a structural
sensor to closely scan the remote and the calculator for ob-
taining good and detailed geometry. For diffuse objects with
okay depth quality, we argue that further leveraging do-
main adaptation would be beneficial; however, for certain
metallic or transparent objects, their depth will be incom-
plete, falling into a completely different problem. We leave
a more fundamental solution to predict/refine geometry for
future works.

7.2. Outlier Part Shapes

In our work, GAParts are defined to be functional parts
with similar geometry and actionability. So how can our
framework tackle the parts with outlier shapes?

Here we take the curvy or irregular handles on doors as
an example. For certain handles, their perception is basi-
cally an out-of-distribution perception problem and can the-
oretically be tackled within our framework; however, we
admit the pose of those outliers may not be so informative,
which may lead to failure in manipulation heuristics. We
argue that the function and actionability of outlier door han-
dles, e.g., revolving to open, is still the same as the regular
ones. So learning a manipulation policy based on action-
able information instead of relying on heuristics would be
promising (see our further discussion in Sec. 7.3) and can
potentially handle those outliers.

7.3. Part Information for Manipulation in RL

By definition, the GAPart carries abundant information
about the part’s pose, function, actionability, efc., which is
valuable to facilitate manipulation policy learning in RL.
Here we provide a pilot study and some preliminary results
to showcase the usefulness of GAPart information. We con-
duct experiments on learning cross-category manipulation
policy from state observations for opening door and opening
drawer tasks using PPO under dense rewards, as shown in
Tab. 2. We take proprioceptive information and the bound-
ing box of the door/drawer as state input. The distinction
between w/ and w/o pose is whether an additional state in-
put, ground truth handle pose, is used. The results demon-
strate that oracle GAPart information can significantly ben-
efit policy learning. This would hopefully shed light on
more advanced RL designs in future research, such as in-
corporating part pose estimation into reward functions and
leveraging the part pose to canonicalize visual signals.

Cross-Category Generalizable and Actionable Parts in GAPartNet

Seen Object Categories Unseen Object Categories

Round Fixed Handle Line Fixed Handle

Slider Drawer Slider Button Slider Lid Hinge Lid Hinge Handle

Hinge Door

Hinge Knob

Figure 2. Exemplar Objects of Each GAPart Class from Seen Categories and Unseen Categories. We show objects in gray scale,
GAPart segmentation masks in color, and GAPart poses using oriented tight bounding boxes.

Qualitative Results of Part Segmentation and Part Pose Estimation (Seen Category Unseen Instance)

Input Part Segmentation Part Pose Estimation

Point Cloud PointGroup SoftGroup AutoGPart Ours GT Ours GT

Figure 3. Part Instance Segmentation and Pose Estimation Results on the Unseen Instances from the Seen Categories. Here we
compare our method on part instance segmentation task with PointGroup [3], SoftGroup [9], and AutoGPart (modified from [5]).

Qualitative Results of Part Segmentation and Part Pose Estimation (Unseen Category Unseen Instance)

Input Part Segmentation Part Pose Estimation
Point Cloud PointGroup SoftGroup AutoGPart Ours GT Ours GT

Figure 4. Part Instance Segmentation and Pose Estimation Result on the Unseen Instances from the Unseen Categories. Here we
compare our method on part instance segmentation task with PointGroup [3], SoftGroup [9], and AutoGPart (modified from [5]).

Qualitative Results of Part Segmentation and Part Pose Estimation (Real World)

Part Segmentation Part Pose Estimation Result

Figure 5. Part Instance Segmentation and Pose Estimation Result on the Unseen Objects from the Real World.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 24(6):381-395, 1981. 3

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, Frangois Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. The journal of machine learning
research, 17(1):2096-2030, 2016. 2

Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-
Wing Fu, and Jiaya Jia. Pointgroup: Dual-set point group-
ing for 3d instance segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4867-4876, 2020. 2, 3,7, 8

Liu Liu, Wengiang Xu, Haoyuan Fu, Sucheng Qian, Qiao-
jun Yu, Yang Han, and Cewu Lu. Akb-48: A real-world
articulated object knowledge base. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14809-14818, 2022. 1

Xueyi Liu, Xiaomeng Xu, Anyi Rao, Chuang Gan, and Li Yi.
Autogpart: Intermediate supervision search for generalizable
3d part segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11624-11634,2022. 3,7, 8

Kaichun Mo, Leonidas J Guibas, Mustafa Mukadam, Abhi-
nav Gupta, and Shubham Tulsiani. Where2act: From pixels
to actions for articulated 3d objects. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 6813-6823,2021. 4, 5

Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang, Xu-
anlin Li, Stone Tao, Zhiao Huang, Zhiwei Jia, and Hao
Su. ManiSkill: Generalizable Manipulation Skill Benchmark
with Large-Scale Demonstrations. In Annual Conference on
Neural Information Processing Systems (NeurIPS), 2021. 3,
4,5

Shinji Umeyama. Least-squares estimation of transformation
parameters between two point patterns. IEEE Transactions
on Pattern Analysis & Machine Intelligence, 13(04):376—
380, 1991. 3

Thang Vu, Kookhoi Kim, Tung M Luu, Thanh Nguyen, and
Chang D Yoo. Softgroup for 3d instance segmentation on
point clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2708—
2717,2022. 7,8

He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin,
Shuran Song, and Leonidas J Guibas. Normalized object
coordinate space for category-level 6d object pose and size
estimation. In CVPR, pages 2642-2651, 2019. 2

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao
Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan,
He Wang, et al. Sapien: A simulated part-based interactive
environment. In CVPR, 2020. 1, 3,4, 5

	. Dataset and Data Annotation
	. Data Annotation
	. Dataset Rendering

	. More Details on Part Segmentation and Part Pose Estimation
	. Details on Network Architecture
	. Details on Supervision
	. Details on Pose Fitting and Joint Prediction
	. Training Procedure
	. Seen/Unseen Object Categories Splitting
	. Baseline Experiments

	. More Details on Part-based Object Manipulation
	. Interaction Policy
	. Simulation Experiments
	. Real-world Experiments

	. Visualization of GAPartNet Dataset
	. More Results of Part Segmentation and Part Pose Estimation
	. More Results of Part-based Object Manipulation
	. More Discussions
	. Real Depth Signal and Sim-to-Real Gap
	. Outlier Part Shapes
	. Part Information for Manipulation in RL

